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A Configuration-Oriented SPICE Model for 

Multiconductor Transmission Lines with Homogeneous Dielectrics 

K. D. Marx and R. I. Eastin 
Sandia National Laboratories, Livermore, CA 

ABSTRACT 

The use of the SPICE circuit analysis computer program to simulate a 

lossless multiconductor transmission line is investigated. It is demonstrated that 
for the case of a homogeneous dielectric, the multiconductor line can be 
represented by a system of standard two-wire lines which is not based on 
modal decomposition. This system is readily modeled with SPICE. While 
restricted to situations where the dielectric constant can be assumed 
homogeneous, the present method has the advantage of an intuitive 
relationship to the conductor configuration, simpler SPICE input data 
requirements, and an improvement in computer run time over other methods. 
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I. INTRODUCTION 

It is often necessary to consider systems of interconnecting wires or 
other conductors as multiconductor transmission lines (MTLs) [1] - [9]. In many 
cases, the complexity of such systems dictates the use of numerical methods to 
simulate their electrical response. The SPICE computer program [10] - [13] is 

often used for this purpose [6] - [9]. 

The analysis of an MTL with inhomogeneous dielectric requires the 
decomposition of signals into normal modes of propagation. (On a three- 
conductor line these modes are often referred to as "even mode" and "odd 
mode" (for symmetric lines) or "common mode" and "signal mode" [1], [3].) 
Such modes propagate at different velocities in general. The resulting SPICE 
models incorporate this decomposition via the introduction of a system of two- 
conductor transmission lines connected to a network of dependent sources. 
This procedure is described in References [6] - [9]. 

The purpose of the present paper is to introduce a simplified SPICE 
model for MTLs. Our method has two important physical restrictions. First, 
significant signal propagation is restricted to situations in which the 
propagation velocity on the line is unique. In principle, this means that the 
dielectric constant and magnetic permeability must be uniform over that cross- 
section of the line in which a nonzero electromagnetic field exists [3]. In 

practice, it is often a good approximation for signals of interest, even on MTLs 
with inhomogeneous dielectrics. The second restriction is that the lines are 
assumed to be lossless. It is difficult to relieve this constraint within the 
framework of the SPICE lossless delay line model. Although not implemented 
numerically there, References [8] and [9] contain discussions of the problem of 
lossy MTLs. 

It is not the intent of the present paper to be critical in any way of the 
computational models in References [6] - [9], which deal with the general case 
of inhomogeneous dielectrics, or equivalently, nonunique modal propagation 
velocities. The normal mode decomposition is necessary in that case. If, 
however, one can accept the restriction to a single propagation velocity, our 
method offers some advantages: (1) The SPICE data files are simpler, and the 
two-conductor lines implemented in them have an interpretation which is more 
physically intuitive than that corresponding to normal modes, (2) Experimental 
measurements on an MTL can be easily converted into the parameters which 
define the SPICE delay lines, and (3) Computer run times can be reduced. (We 
note, however, that our procedure may lead to more severe computer memory 
requirements in some versions of SPICE. This is discussed in Section V.) 

In the following section, we give the telegrapher's equations for lossless 
MTL systems and make a plausible argument indicating that a network of two- 



wire delay lines can be used to represent an MTL with homogeneous 
dielectrics. In Section III, a complete proof is given of the equivalence of this 
network and the original MTL. In Section IV, the resulting model is summarized 
and methods of determining its parameters are described. In Section V, the 
method is applied to the problem discussed by Paul [8]. The final section of the 
paper offers some concluding remarks. 

In this work, we deal primarily with time domain analysis. However, the 
formulation applies equally well to the frequency domain, and this is exploited 
in the proof in Section III. 

II. DERIVATION OF THE MODEL. PRELIMINARIES 

If the signal frequencies are sufficiently low that wavelengths are long 
compared to interconductor spacing, the only propagation modes permitted on 
an MTL will be TEM or quasi-TEM modes. (If the dielectric constant is 

inhomogeneous, the modes are referred to as quasi-TEM, because then it is in 

general impossible for the electric and magnetic fields to be literally transverse 
[14], [15]). Let the number of conductors, including the ground or return line, be 

n. (See Fig. 1.) Propagation on the line is described by the telegrapher's 
equations [1] - [9]. 

3V (z,t) , 
31 (z.t) 

... 9z =~L 9t (1) 

,_^__ 
9V(z,t) 

9z -'c 9t w 

where V (z,t) and / (z,t) are (n -1)- dimensional column vectors which represent 
the voltage and current on the conductors, and L and C are (n -1) x (n -1) 
inductance and capacitance (per unit length) matrices. If the dielectric is 

homogeneous, we have [3], [8] 

L=-^C-1 (3) 

^ 

where VQ is the propagation velocity in the dielectric, given by 
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Figure 1. Schematic of an n-conductor transmission line with homogeneous 
dielectric. The line is completely characterized by the permeability a 
dielectric constant e. capacitance matrix C and length d 
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(4) 

and ^ and e are the magnetic permeability and dielectric constant, 
respectively. 

It may further be shown [3] that for this case, signals on the line consist of 
waves which propagate in the forward and backward directions on the line with 
velocity VQ. For these waves, the current and voltage are related by 

If- Yo Vf (5) 

lb=-YoVb (6) 

where subscripts fand b refer to forward- and backward-travelling waves, 
respectively, and Yy is the characteristic admittance matrix, given by 

Yo=VoC (7) 

We will now present a system of two-wire lines that is an exact synthesis 
of the MTL shown in Fig. 1. Proof that the synthesis is correct will be given in 

the following section. 

To derive the model, we imagine that we have an infinitely long MTL 
Then any n-port source connected to it sees a purely resistive n-port network 
with admittance matrix YQ [3]. This suggests that one can simulate the MTL with 

a system of two-wire lines, one for each pair of ports with characteristic 
impedances chosen so that the admittance matrix is just YQ. This arrangement 
is shown schematically for a 4-conductor line in Fig. 2. 

In general, the number m of two-wire lines required will be 

m=- 2 (8) 

The line connecting conductor a to conductor {S will be designated T(^R » ^h 
characteristic impedance Zoaft.- (Ground is conductor 0.) 



Figure 2. Representation of the synthesis of a 4-conductor transmission line 
with 6 two-wire lines. An end-on view of 3 round wires over a ground plane is 
shown. The resistance Zoap represents the characteristic impedance of the 
two-wire line connected between conductor a and conductor p 



It is easy to show that it is possible to select the ZoaB so that the 

admittance matrix is YQ. The matrix has the following properties [3], [16]. It is 

real, symmetric, dominant, and has positive diagonal elements and negative 
off-diagonal elements. Let the elements be YQ^Q. By definition, YoaB is the 

current flowing into conductor a per unit voltage applied to conductor ff with all 

conductors other than B shorted to ground.* The network of ZyaB^ w^ satisfy 

these requirements if we choose 

^"^"""W ' a^B,B^O (9) 

__1 ^00= n.1 
£ ^aB 

B=1 

(10) 

where the sum is over all conductors including the cdh conductor. Recall that 

YoaB Is rea! ano neflative if a^B. Then, as evaluated in (9), ZoaB is real and 

positive, and can be realized with an ideal delay line. Furthermore, Yoaa ls 

positive and YQ is dominant. Hence the sum in (10) is positive, and ZoaO ls 

similarly realizable. 

*The following may aid in an intuitive interpretation of YQ: Any diagonal 

element Yoaa ls positive because it is the current into conductor a per unit 

voltage applied to the same conductor. Conversely, when all conductors 
except the a th are grounded, their currents are negative (or zero) with respect 
to the sign of the voltage on conductor a, since they each carry (at most) part 
of the return current. Hence, YoaB < 0 a^ B. Furthermore, the magnitude of 

the sum of all these return currents must be less than the input current (current 
on the ground conductor is not included in this sum). This means that the matrix 
is dominant: 

yoaa > ~ £ yoaB 
a^B 

Finally, the matrix is symmetric by the usual reciprocity arguments, and it is real 

because of the nature of TEM waves. 
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This result for an MTL of infinite length suggests that a finite-length MTL 
with homogeneous dielectric can be simulated with m two-wire lines of the 
same length and propagation velocity, where m is given by (8), and the 
characteristic impedances are given by (9) and (10). In the following section, 
we give a complete proof for the finite-length line. (Note: Section III can be 
skipped without loss of continuity.) 

III. PROOF THAT THE SYSTEM OF TWO-WIRE LINES 
SIMULATES THE MTL 

The desired proof appears to be most easily obtained by considering the 

frequency domain. The temporal factor e/^will be assumed. The general 
solution of Eqs. (1) and (2) is then [17] 

V^Ae-^+BeJ^ 

l=Yo(Ae'jkz-Be!kz) 

where 

k-^ k-^ 

is the wave number on the line, and A and B (the amplitudes of the forward and 
backward waves) are arbitrary vectors (up to this point). We wish to consider 
the n-conductor MTL of Fig. 1 as a 2n-port network. This means that we want 
to obtain relationships between all the voltages and currents at both ends of the 
line. Subscripts a and b will be used to signify quantities at z=0 and z=d, 
respectively. Then the quantities of concern are 

Va=A^B 

la=Yo(A-B) 
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Vb ^Ae-Jkd+BeJ^ 

Ib = YofAe-J^-Be^) 

Eliminating A and B and rearranging, we obtain 

-/ sin kd la = YO ^b - cos kd Vg) 

1^ - cos kd I g = -j sin kd YQ Vg 

(11) 

(12) 

Now consider the general network of n(n-1)/2 two-wire lines shown in 

Fig. 3. We wish to show that the signals at the terminals of this network will 

satisfy Eqs. (11) and (12) if the characteristic impedances are given by Eqs. (9) 
and (10). Lower-case symbols will be used to denote the voltages and 
currents on these delay lines; i.e., v^g and /'afl are the voltages and currents 

on line T^fl, which is connected between nodes a and j3. It is to be understood 

that the delay times for all the T^ff are the same as the delay time of the MTL: 

^ <13) 

Since Eqs. (11) and (12) hold equally well for a simple two-wire line, we have 

-y sin kd igap = Yoaft ̂ baft - oos kd Vgap ) (14) 

ibaft - cos kd /aa/5 = -/ sin kdy^p Vgap (15) 

for any a, {5, where 

t 1 

yoaft -zoap 
(16) 

12 
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Figure 3. Network of n(n-1)/2 two-wire lines which simulates the general 
n-conductor MTL shown in Fig. 1. 
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is the characteristic admittance of T(^B (superscript "t" for "two-wire"). 

In the model of Fig. 3, the indices are to be ordered so that the two-wire 
line voltages are related to the node voltages on the MTL by 

{Va-Vp a>ft 
^'[Vp-Va a<j8 

(17) 

In other words, the reference node on the two-wire line corresponds to the 
second index if it is lower than the first, and vice versa. This choice is 

arbitrary, but it must be observed systematically in what follows. Then the 
simulated MTL currents are 

la = ia0 + 'a1 + 
- 

+ ia,a-1 
- '^a.a+1 - 

- 

- 

la.n-l (18) 

Note that we will subsequently be appending subscripts a and b to the terms in 

Eqs. (17) and (18) to denote signals at z=0and z=d. 

From (14) and (18), we obtain a relation between the simulated MTL 
currents lg (at z=0) and the voltages v^aS ana ^baB'- 

-jsinkdlaa= YoaO^baO-ecs kdvgao) 

^oal ^ba1 - °os kdvaal) +••• 

^oa^-l ^ba.a-l 
- cos kd Vaa,a-l) 

~yoa,a+1 ^ba.a+l - cos kd Vga.a+l) 
- 

- 

-Yoa.n-l ^ba,n-1 - cos kd Vaa.n-^ 
(19) 
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Using (17), we convert (19) into a formula involving the simulated MTL currents 
and node voltages: 

n-1 

V' t 
•j sin kd /aa = / 

, 
Yoaft ^bcc - cos kd Vga) 

^0 

n-1 

S 
^1 

f t 

yoap^bp-ecs^^p) (20) 

where L ' 

means to sum over all values of fS not equal to a. 

By manipulating (15), (17), and (18) in exactly the same way, we obtain 

H' 
jM 

Iba - cos kd laa-J sin kd J y^ Vga - 7 Yoap ^3 
^ 
^yo( 
P=1 

(21) 

We see that (20) and (21) are exactly equivalent to the a th components 
of (11) and (12) if we choose 

-^ Yoaa = / 
^ 

Yoap 

p=o 

(22) 

^aj^-Voa/? ' a^ (23) 

But (23) is the same as (9) (in view of (16)). Furthermore, upon application of 
(23), Eq. (22) becomes 
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^oaa = VoaO ~-<<—' Yoaft 

so that 

^ 1 

zoa0=~t~~ss~r^—— 
yoao 2>oa/5 

P=1 

which is identical to (10). 

Therefore, the network shown in Fig. 3 is completely equivalent to the 
MTL of Fig. 1 if (9), (10), and (13) are satisfied. Furthermore, from the results of 
Section II, they can always be satisfied by a network of lossless two-wire lines. 
This completes the proof. The network in Fig. 3 can easily be modeled by a 

system of SPICE delay lines once the zoafi an^ ^ are known. 

IV. SUMMARY OF THE MODEL. COMMENTS ON 
DETERMINATION OF THE PARAMETERS 

In summary, our SPICE model for an MTL is as follows: set up a network 
of two-wire delay lines wherein there is one delay line connecting each pair of 
conductors in the MTL, as shown in Fig. 3. The relevant equations describing 
this configuration are collected in Table I for reference. 

Before proceeding to a specific application, we offer some comments on 
the determination of the values of ZQO,Q required for the model. From Eqs. (9) 
and (10), we see that this is tatamount to determining YQ. Furthermore, from (7) 
it is clear that if we know Vy, knowledge of the components of C suffices. 

Theoretical methods of determining capacitance coefficients are described in 

many textbooks on electromagnetic theory [17] - [20]. Complex geometries can 
be treated via numerical solutions to Laplace's equation. We will not describe 
these methods further. However, in what follows, we will discuss some 
relationships between matrix elements and experimental methods for 
determining them. 

16 



Table I. Parameters defining two-wire delay lines in the SPICE model. (See Fig. 3) 

Number of conductors 
in MTL 

n 

Number of interconnect¬ 
ing delay lines in SPICE 
model 

(8) 

Characteristic 
impedances of delay 
lines (in terms of 

elements of 
characteristic 
admittance matrix) 

^^Yoap ' 

zoa0=~rj.r V 
L^ap 

ft=1 

a^P .^0 (9) 

(10) 

Delay time (same as 
for MTL) 

td='^ (13) 

17 



The instrumentation that one commonly has available consists of a time 
domain reflectometer (TDR) and/or an impedance analyzer with which the 
characteristic impedance and/or the capacitance can be measured between 
two terminals. We have found it convenient to use both of these instruments, 
one being a check against the other. The TDR can also be used to measure 
the time delay f^o1'th® system. Furthermore, it can provide information on the 

propagation velocities of different modes in a system with inhomogeneous 
dielectrics. Hence, it can help determine whether the system can be treated 
approximately as an MTL with homogeneous dielectrics in a particular 
situation. 

Using a standard TDR or impedance analyzer, one can readily measure 
the diagonal terms Voaa or ^aa- However, the off-diagonal terms VoaB or 

CaB' ^P' are not directly measurable. To obtain them, one must make a series 

of measurements between each pair of ports and then solve a system of 
equations for the elements of YQ or C. 

One systematic way to do this is to obtain the inverse matrix by 
measuring the admittance or capacitance between each pair of terminals with 
all other terminals open-circuited. We will use the admittance matrix as an 
example, but the capacitance matrix can be treated in a completely analogous 
manner. The inverse of the admittance matrix is the characteristic impedance 
matrix: 

ZO-YO (24) 

The component ZoaQ of ^is th® voltage on the crth conductor per unit current 

into the j3th conductor with all conductors other than the j3th (and ground) 
open-circuited. Now consider measuring the impedance between each pair of 
terminals in the MTL with all other terminals open-circuited. Let the results of 

-those measurements be ZQ^Q (a,(3=0,1,...,n-1). By definition, the diagonal 

elements of ZQ are given by 

_ 
m 

,—. ^oaa = 

zoao ( -' 

To determine the off-diagonal elements Zoafi- a^ P' w® note that the process 

of measuring z^a implies application of the formula 

18 



/" ^"^ (26) ^aJS = 

la 
(26) 

where V^ and VQ are voltages referenced to ground. Since all terminals other 

than a and ff are open-circuited, IQ = -/a. From the definition of ZQ, we then 

have 

Va = ^aa la+zoap 1? 

= (-^oaa - zoaft) ^a 

^3 = Zopa ^ + ^o/3j3 ̂  

= (Zoaft -Zopft) 'a 

where we have used the reciprocity relation ZoQa = zoaQ • Substituting 

these expressions into (26), using (25) to eliminate Zoaa and zofS{5' and 

rearranging, we obtain 

_ 

1 
. 

m m in , „ ,-_. Zoaft = 2 ^oaO + zop0 ~ 

zoap ) ' a^ <27) 

Once the elements of Zy are determined, the elements of Yy can be 

obtained by matrix inversion. Determination of these parameters is simpler than 
is the case for modal decomposition in that only matrix inversion is required, 
rather than solution to an eigenvalue problem. 

It may be noted that, in view of Eqs. (3) and (24), a measurement of the 
inductance matrix yields the impedance matrix ZQ. However, inductance 

measurements are sometimes more ambiguous than capacitance 
measurements because of the internal inductance and resistive losses of the 
conductors, and the frequency dependence of these parameters. Hence, we 
have chosen to ignore them in this discussion. Capacitance measurements 
made at low frequency will yield the admittances for the ideal case of a lossless 
line. 
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V. APPLICATION 

As an example of the application of the model in a SPICE simulation, we 
consider the system studied by Paul [8]. The configuration is shown in Fig. 4. 
The dielectric constant and permeability are those of vacuum (VQ = 3 x 108 m/s) 
and the length of the line is d= 4.67 m. Hence, from (13), the time delay is t(j= 
15.58 ns. Paul gives the inductance matrix as 

ro.9179 0.1609 "i 
L=! 

0.1609 0.9179 
^ ^ 

< / 

(Note that the MTL is symmetric with respect to conductors 1 and 2.) 

We could simply evaluate YQ by inverting Lto obtain C(see Eq. (3)), and 

then applying (7). However, to illustrate the experimental considerations 
discussed in the previous section, we will take the point of view that we are 
determining the parameters experimentally. Consider the MTL as shown in Fig. 
4 (a). If one connects a TDR from ground to either conductor 1 or conductor 2, 
leaving the other open-circuited, an impedance of 

m m 
<»-„- A i- zo10=zo20=276•30^m 

will be measured. The impedance between conductors 1 and 2 (with ground 
open) will be 

ZQ^)= 454.1 ohm 

(In this case, these values were obtained from appropriate manipulation of the 
inductance matrix; they are the theoretical values of the measured 
impedances.) 

Then the elements of the characteristic impedance matrix are given by 
(25) and (27) as 

20 
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t (ns) 

(c) Input voltage waveform 

Figure 4. Three-conductor line and electrical configuration used for the 
sample problem. (From Paul [8].) 
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ZQH = Zo22 = 275.3 ohm 

Zol2 = ^(275.3+275.3-454.1) 

48.2 ohm 

The characteristic admittance matrix is obtained from (24): 

Yo ^ 

275.3 48.2^~ 
48.2 275.3 

3.747 -0.657} 
-0.657 3.747 

(mmho) 

Then Eqs. (9) and (10) give the values of the two-wire characteristic 
impedances for the SPICE model: 

103 
zo10 = WO = 

3.747-0.657 
= 323.6 ohm 

-103 
zo12 = =0^57 = 1522 ohm 

The resulting SPICE network is shown in Figure 5. The input data file is shown 
in Table II. 

The input data file for Paul's modal decomposition method is reproduced 
from Reference 8 in Table III. The present method employs three two-wire lines 

as opposed to two in Paul's method. However, it is clear that the use of two- 
wire lines instead of the modal decomposition method leads to considerable 
simplification. 

We ran SPICE with both these models. We used two different versions: 
PSPICE on an IBM PS/2 Model 80, and SPICE Version 2G on a VAX-8650 
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I^o : same as ' 10 

® 

T^ :Zo=1522Q,fd =15.58ns 

® © 

T.n :Zo=323.6Q.fd = 15.58ns 10 

Ground is node 0 

Figure 5. The SPICE network resulting from the application of the present 
model to the sample problem used by Paul [8]. The numbers in circles identify 
the nodes used in Table II. (The corresponding nodes also appear in Table III.) 



Table II. SPICE input data file for the present 
method. (Time is expressed in nanoseconds.) 

* MTL MODEL USING TWO-WIRE DELAY LINES 
* 

VS 1 0 PULSE (010 12.5 12.5 7.5 1000) 
RS 1 2 50 
RL 9 0 50 
RFE 10 0 50 
RNE 17 0 50 
* 

T01 2 0 9 0 Z0=323.6 TD=15.58 
T12 2 17 9 10 Z0=1522 TD=15.58 
T02 17 0 10 0 Z0=323.6 TD=15.58 
* 

.TRAN .5 200. 

.OPTIONS LIMPTS=801 PIVTOL=1.0E-16 

.PRINT TRAN V(l) V(2) V(9) V(17) V(10) 

.END 
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Table III. SPICE input data tile for Paul's method. 
(From Reference 8.) (Time is expressed in nanoseconds.) 

* MTL MODEL USING MODAL DECOMPOSITION 
* 

VS 1 0 PULSE (010 12.5 12.5 7.5 1000) 
RS 1 2 50 
VI 2 3 

RL 9 0 50 
V3 9 8 

RFE 10 0 50 
V4 10 11 
RNE 17 0 50 
V2 17 16 
E1 3 4 50 .707 
E2 4 0 14 0 -.707 
E3 8 7 60 .707 
E4 7 0 13 0 -.707 
E5 11 12 60 .707 
E6 12 0 13 0 .707 
E7 16 15 50 .707 
E8 15 0 14 0 .707 
F1 0 5 VI .707 
F2 0 5 V2 .707 
F3 0 6 V3 .707 
F4 0 6 V4 .707 
F5 0 13 V3 -.707 
F6 0 13 V4 .707 
F7 0 14 VI -.707 
F8 0 14 V2 .707 
T1 5 0 60 Z0=323.70 TD=15.58 
T2 14 0 13 0 Z0=227.07 TD=15.58 
.TRAN .5 200 
*OPTIONS LIMPTS=801 
.PRINT TRAN V(l) V(2) V(9) V(17) V(10) 
.END 
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computer running the VMS operating system. The results from the two models 
agree to essentially four significant figures on either computer; voltage across 
resistor H^E ls shown in Fig. 6. 

We found that the present model used approximately 33% less CPU time 
than that required for Paul's model for this problem when run with PSPICE. 
There was an even greater difference of 66% less on the VAX. (These figures 
include cases in which the problem time was extended in order to obtain better 
CPU statistics.) Hence, it appears that the present method can also offer 
advantages of computational efficiency. 

It should be noted that the delay line model in some versions of SPICE 
may use relatively large amounts of computer memory [11]. The number of 
delay lines required to simulate an n-conductor line using our model is 
m = n(n-1)/2, compared to n-1 delay lines for a modal decomposition model. 
Hence, a point could be reached where one would have to use a modal 
decomposition model to avoid running out of memory. We have, in fact, 
encountered memory limitations when running simulations requiring five delay 
lines with our model on the VAX version of SPICE. The effect of this is to 
restrict the physical simulation time available. However, so far we have not 
had this difficulty when running PSPICE. In particular, the same problems that 
failed on the VAX version ran without incident on PSPICE. Hence, many 
practical problems are readily accessible to the model. 

VI. CONCLUDING REMARKS 

This paper has presented a method for simulating multiconductor 
transmission lines with the SPICE circuit analysis program. The method offers 

an alternative to the modal decomposition methods proposed by other authors. 
It should be repeated here that this work does not intend to offer criticism of the 
other methods. Modal decomposition is necessary when it is important to 
consider different propagation velocities on lines with inhomogeneous 
dielectrics. Furthermore, in some cases the modal decomposition methods 
might use less computer memory. However, we have found that our method 
leads to simpler SPICE input data structures (hence, shorter setup times) and 
reduced CPU time. The simpler input data is actually a result of a very intuitive 

physical interpretation of the wire-to-wire characteristic impedances measured 
on the MTL This interpretation has been emphasized above in a discussion of 
experimental and theoretical procedures for determining the parameters used in 

SPICE calculations. 
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